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Summary 
 

Primary mitochondrial diseases are a 
heterogeneous group of rare genetic disorders 
affecting approximately 125 persons per million. 
Mutations underlying these diseases give rise to 
biological changes (including decrease in cellular 
energy production and increase in reactive oxygen 
species), leading to organ failure, and commonly early 
morbidity. Mitochondrial diseases often present in 
early childhood and lead to the development of severe 
symptoms, with severe fatigue and myopathy being 
some of the most prevalent and debilitating clinical 
signs. 

 

There are currently no cures for mitochondrial 
diseases, nor any approved pharmaceutical 
treatments for multisystemic disorders. 

 

Current drug development in mitochondrial 
diseases focuses mainly on modulation of oxidative 
stress, regulation of the expression of genes involved 
in metabolic pathways, modulation of coenzymes, 
induction of mitochondrial biogenesis, and energy 
replacement. 

 

In this short review, we present the current 
landscape of mitochondrial disease drug 
development, focusing on small molecules in clinical 
trials conducted by industrial sponsors. 
 

https://doi.org/10.26124/bec:2022-0004
https://doi.org/10.26124/bec:2022-0004
https://doi.org/10.26124/mitofit:2022-0014
https://doi.org/10.26124/mitofit:2022-0014
mailto:magnus.hansson@abliva.com
https://orcid.org/0000-0001-8426-4836
https://orcid.org/0000-0002-0166-0006
https://orcid.org/0000-0002-6919-585X
https://orcid.org/0000-0003-0167-5328
https://orcid.org/0000-0001-7901-1826
https://orcid.org/0000-0002-0201-0638


 

  
 

Mitochondrial disease: compounds in clinical trials 

 

2 Åsander Frostner et al (2022) Bioenerg Commun 2022.4 
 

 

1. Introduction 
 

1.1. Primary mitochondrial diseases 
 

Primary mitochondrial diseases are a heterogeneous group of rare genetic 
disorders, which stem from a defect in the cell’s energy-producing organelles–the 
mitochondria. These diseases, often devastating, are caused by mutations in the nuclear 
DNA (nDNA) or mitochondrial DNA (mtDNA) which encode mitochondrial components 
such as subunits of the electron transfer system (ETS), mitochondrial assembly proteins, 
or factors regulating mtDNA translation [1] and give rise to biological changes (including 
decrease in energy production, deregulation of calcium signaling, and increase in reactive 
oxygen species) [2]. In affected individuals, these harmful cellular processes lead to cell 
death, tissue and organ failure, and in many cases early morbidity. 

 

Affecting approximately 125 persons per 1 000 000 [3], mitochondrial diseases 
often present in early childhood and lead to severe symptoms and clinical signs such as 
fatigue, myopathy (muscle weakness and/or exercise intolerance), heart failure, 
intellectual disability, movement disorders, and epileptic seizures [4]. Among these, 
fatigue (typically together with myopathy) is one of the most prevalent and debilitating 
effects irrespective of sex, age or genotype [5]. In affected children, where Leigh syndrome 
is the most common mitochondrial disorder, regressive neurological symptoms are 
dominant [6, 7]. In adults, a spectrum of diseases caused by the mtDNA point mutation 
m.3243A>G, with clinical presentations such as mitochondrial encephalopathy, lactic 
acidosis and stroke-like episodes (MELAS) and maternally inherited diabetes and 
deafness (MIDD), are one of the most common groups of primary mitochondrial diseases 
[8]. 

 

1.2. Diagnostics and current standard of care for patients with mitochondrial 
diseases 
 

The effects of mitochondrial disease can arise in any organ, at any age, and with 
varying severity. In fact, in many cases the clinical phenotype is nonspecific [9], making 
these diseases difficult to diagnose. Together with the patient’s family history, diagnostics 
have mainly relied on diagnostic criteria specifically for mitochondrial diseases, which 
take into account the clinical, biochemical and imaging findings and their importance [10], 
often involving the need of a muscle biopsy.  

 

In recent years, great advances within diagnostics of mitochondrial diseases have 
been made with the increasing availability of Whole Genome/Exome Sequencing 
(WGS/WES) [11]. Moreover, the use of serum biomarkers as both predictors of 
mitochondrial dysfunction and diagnostic tools is an emerging field. Recently, fibroblast 
growth factor 21 (FGF21) and growth/differentiation factor 15 (GDF15) levels were 
correlated with disease severity in muscle [12]. In addition, a study confirmed the 
depletion of the co-enzyme and co-substrate nicotinamide adenine dinucleotide (NAD+), 
a central molecule in cellular energy metabolism, including mitochondrial energetics, in 
mitochondrial disease patients suffering from myopathy [13]. 

 

There are currently no cures for primary mitochondrial diseases, nor any approved 
pharmaceutical treatments for multisystemic disorders. To date, the treatment strategies 
are mainly symptomatic, and limited to dietary supplementation with amino acids, 
antioxidants and other supplements (e.g. carnitine, creatine, riboflavin, coenzyme Q10 
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(CoQ10), and vitamin K with ascorbate) [14, 15], the use of which is based on 
circumstantial evidence (no evidence of efficacy from properly controlled clinical 
studies). In some cases, therapy is palliative only [1]. 

 

To date, the synthetic antioxidant Raxone® (idebenone, a CoQ10 analog) is the only 
drug that has been approved, by the European Medicines Agency (EMA), for a 
mitochondrial disease, specifically for Leber’s Hereditary Optic Neuropathy (LHON), a 
disorder causing degeneration of retinal ganglion cells, leading to progressive loss of 
central vision on both eyes. However, no evidence for the efficacy of either idebenone or 
other specific pharmaceutical compounds, in multisystemic mitochondrial diseases, have 
yet been demonstrated. 

 

1.3. Aim and methods 
 

Current drug development in mitochondrial diseases focuses on specific 
mechanisms of action, including modulation of oxidative stress, regulation of the 
expression of genes involved in metabolic pathways, modulation of coenzymes, induction 
of mitochondrial biogenesis, energy replacement, and specific cell- or gene therapy. In this 
short review, we present the current landscape of systemic mitochondrial disease drug 
development, focusing on small molecules in ongoing clinical trials conducted by 
industrial sponsors. In addition to primary literature, sources have included 
www.clinicaltrials.gov and the targeted drug development companies’ websites. 

 

2. Compounds for the treatment of primary mitochondrial diseases in 
ongoing clinical trials 

 

A large percentage of the planned or ongoing clinical studies of mitochondrial 
disease are being conducted by pharmaceutical companies testing small molecules in 
healthy volunteers and/or patients with systemic mitochondrial diseases (Table 1). 

 

2.1. Metabolic reprogramming and mitochondrial biogenesis 
 

NADH:quinone oxidoreductase (NQO1) is a cytoplasmic antioxidant flavoprotein 
that transfers two electrons from NADH to reduce quinones into hydroquinones, some of 
which can then donate their electrons to the ETS [16, 17]. 

 

KL1333 is an orally bioavailable synthetic ortho-quinone, in clinical development 
by Abliva AB in collaboration with Yungjin Pharmaceuticals. Seo et al [18] demonstrated 
in a cell-free system that KL1333 is reduced by NQO1 using NADH as electron donor and 
re-oxidized by transferring its electrons to cytochrome c, undergoing a redox cycle more 
potently and rapidly than that of other quinones such as idebenone and CoQ10.  SIRT1, a 
NAD+-dependent protein deacetylase from the family of silent information regulators 
[19], has been shown to regulate several metabolic pathways such as mitochondrial 
biogenesis, gluconeogenesis, lipolysis and fatty acid oxidation [19-22]. In vitro studies in 
MELAS patient cells showed that KL1333 was able to restore NAD+/NADH levels and 
activate the SIRT1/AMPK/PGC-1α pathway, increasing mitochondrial biogenesis [18].  
KL1333 has been clinically evaluated in a combined Phase Ia/b study in healthy 
volunteers and patients with primary mitochondrial diseases confirming its safety and 
tolerability as well as showing promising trends of improvement of fatigue and functional 
muscle strength in patients treated with active drug compared to placebo [23]. A 
registrational Phase II/III study is planned to start in 2022. 

http://www.clinicaltrials.gov/
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Peroxisome proliferator-activated receptor delta (PPARδ), a nuclear receptor and 
transcription factor, is part of the steroid hormone receptor superfamily [24]. 
Endogenous ligands of PPARδ are mainly lipids [25] and induce an increase in the 
mitochondrial capacity to oxidize fatty acids [26]. PPARδ has been proposed as a 
therapeutic target in metabolic syndrome through its regulation of metabolism in skeletal 
muscle, the heart, the liver, and adipose tissue [27]. 

 

Synthetic agonists of PPARδ have been shown to modulate PPARδ activity [27, 28]. 
The small molecule bocidelpar (ASP0367), developed by Mitobridge, a subsidiary of 
Japanese Astellas Pharma, has been tested in a Phase I clinical trial in healthy volunteers. 
Results showed no harmful effects, and the upregulation of PPARδ target genes was 
observed [29]. The company is currently recruiting primary mitochondrial disease 
patients with myopathy in a Phase II/III study, assessing the effect of bocidelpar on 
functional improvements and fatigue. 

 

US-based Reneo Pharmaceuticals is similarly developing a PPARδ agonist, REN001. 
Results from a concluded proof-of-concept Phase I study in patients with mitochondrial 
fatigue showed, according to the company, promising improvements in a walk test and in 
symptoms questionnaires. Reneo is currently recruiting patients in a Phase II/III study in 
mitochondrial myopathy patients, primarily investigating the effect of REN001 on 
improvements in the distance walked in a walk test.  

 

US-based Cyclerion Therapeutics' CY6463, described as a CNS-penetrant soluble 
guanylate cyclase stimulator, is in development for the treatment of a subset of 
neurological conditions, including MELAS. Guanylate cyclase is an important enzyme of 
the nitric oxide signaling pathway and catalyzes synthesis of the second messenger cGMP 
[30]. cGMP, in turn, drives the activation of protein kinases, ion channels, and 
phosphodiesterases [31], and has been shown to induce mitochondrial biogenesis as well 
as ATP formation [32]. In preclinical studies, CY6463 has been shown to improve 
neuronal activity, mediate neuroprotection, and increase cognitive performance [33]. The 
company is currently investigating the safety, tolerability, pharmacokinetics, and 
pharmacodynamics of the compound in a Phase IIa study in MELAS patients with 
neurological manifestations. In addition, Cyclerion will assess near-term impact on 
disease-specific biomarkers, brain perfusion, neurodegeneration, and cognition. 

 

2.2. Energy replacement and substrate enhancement 
 

Complex I (CI) dysfunction, one of the most common mitochondrial impairments, 
can lead to a decrease in the NAD+/NADH ratio, a decrease in mitochondrial membrane 
potential, and increased succinate utilization by Complex II (CII)/succinate 
dehydrogenase [7, 34-37]. Patients presenting with primary mitochondrial disorders 
with CI dysfunction could benefit from replenishment of succinate and additional 
energetic inputs to the ETS through CII, bypassing the dysfunctional CI. Due to the lack of 
passive transport of succinate in most cellular membranes, extracellular succinate 
treatment would result in limited bioenergetic effects. Abliva AB has designed and tested 
permeable succinate prodrugs. NV189, the first generation of permeable succinate 
prodrugs, has been shown to ameliorate the increase of lactate production in chemically 
CI-inhibited human platelets and increase the spare respiratory capacity of Leigh 
syndrome patient-derived fibroblasts [38]. NV354, the second generation of cell 
membrane permeable succinate, has been designed as an oral chronic treatment of Leigh 
syndrome. Due to its high brain exposure, NV354 might potentially be tested for other 
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mitochondrial diseases with neurological symptoms such as MELAS or LHON. A clinical 
Phase I trial is planned to start in 2022.  

 

Similar to Leigh syndrome patients, children suffering from the ultra-rare mtDNA 
depletion syndrome thymidine kinase 2 (TK2) deficiency have a short life expectancy. 
TK2 serves a role in the supply of deoxynucleotides for mtDNA synthesis, and patients 
with TK2 deficiency exhibit severe myopathy and ultimately respiratory failure. The drug 
candidate MT1621, containing pyrimidine nucleosides, has been developed by US Modis 
Therapeutics (subsidiary of Zogenix, which was recently acquired by Belgian UCP), for the 
treatment of TK2 deficiency. Results from a retrospective Phase II observational study 
with MT1621 in TK2 deficiency patients showed an improved survival and scores in 
predefined response thresholds, and some patients regained functions that they had 
previously lost. MT1621 will be evaluated in a Phase III single-arm study in children and 
adolescents, evaluating the proportion of subjects acquiring a motor milestone, and the 
time to acquisition of a motor milestone, not present before treatment, as well as survival. 

 

2.3. Regulation of reactive oxygen species 
 

Mitochondria are the main producers of reactive oxygen species (ROS) such as 
superoxide anion (O2-), produced mainly in CI and CIII and converted to H2O2 by 
superoxide dismutase (SOD) [39]. Oxidative stress is caused by the imbalance between 
ROS production and antioxidant cellular capacity leading to cellular damage of 
macromolecules [40, 41].  

 

Sonlicromanol (KH176) is an orally bioavailable hydrophilic vitamin E-based 
compound from Dutch Khondrion BV. Sonlicromanol has a multi-modal mechanism 
acting both as ROS and redox modulator with the latter caused by activation of 
thioredoxin/peroxiredoxin activity [42]. Furthermore, sonlicromanol presents anti-
inflammatory properties due to the inhibition of mPGES-1 [43]. Safety and tolerability of 
sonlicromanol were confirmed in mitochondrial disease patients with m.3243A>G 
mutation [44]. Its efficacy for cognitive function is currently being evaluated in a Phase 
IIb trial and will be further evaluated for long-term effects for patients that have 
completed the previous study. In addition, sonlicromanol will also be tested in children 
(<17 years old) with confirmed mitochondrial disorder with oxidative phosphorylation 
defects suffering from motor symptoms (Phase II).  

 

Elamipretide (SS-31, MTP-131, Bendavia) developed by US Stealth 
Biotherapeutics, is a permeable tetrapeptide that reaches and localizes to the 
mitochondrial inner membrane. Elamipretide targets cardiolipin, a phospholipid situated 
in the mitochondrial inner membrane important for mitochondrial morphology [45], 
improving the cristae architecture, decreasing pathogenic ROS production and increasing 
ATP generation [46, 47]. The tolerability and efficacy of elamipretide has been clinically 
tested in genetically confirmed primary mitochondrial myopathy (PMM) patients. The 
results indicated that elamipretide was well-tolerated,  and the drug showed a positive 
trend towards improvement in the six-minute walk test (6MWT) (primary endpoint) in a 
phase II trial [46]. During Phase III, the evaluation of efficacy did not meet the primary 
endpoints which included 6MWT and total fatigue score on the Primary Mitochondrial 
Myopathy Symptom Assessment (PMMS assessment). Post hoc analysis, however, 
revealed a significant difference in the primary endpoint on nDNA-related PMM. 
Therefore, a Phase III clinical trial will be performed to evaluate the efficacy of 
elamipretide in PMM patients with replisome-related nDNA mutations. 
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Barth syndrome is a primary mitochondrial disorder involving defects in the 
acyltransferase tafazzin, reducing acylation of monolysocardiolipin, which leads to 
decreased production of mature cardiolipin [48]. This, in turn, leads to altered 
mitochondrial morphology, increased ROS levels, and alterations in the ETS [48]. The 
disease gives rise to symptoms such as skeletal muscle weakness and cardiomyopathy. 

 

Clinical Phase II and III trials have been performed for the evaluation of safety, 
tolerability, and efficacy (6MWT, Barth Syndrome-Symptom Assessment) in genetically 
confirmed Barth syndrome patients. In part 1 of the study, no significant improvements 
were observed after 12 weeks of elamipretide exposure in a placebo-controlled crossover 
trial. The evaluation of long-term exposure in an open label extension (no control group, 
part 2) supported long-term safety and tolerability of elamipretide (primary endpoints)  
with significant improvements over time in secondary endpoints such as 6MWT and total 
fatigue score on the Barth Syndrome system assessment [49].  

 

Vatiquinone (EPI-743, ATQ3) is a para-benzoquinone from PTC Therapeutics 
(former BioElectron and Edison Pharmaceuticals) derived from the hydrolysis of vitamin 
E [50]. Vatiquinone, when compared to other evaluated antioxidants, demonstrated a 
higher efficacy and potency in protecting cells against oxidative stress, which led to 
increased cell viability in glutathione-depleted Friedreich ataxia and Leigh syndrome 
patient-derived fibroblasts [50, 51]. Interestingly, vatiquinone had the capacity to 
replenish the reduced form of the glutathione pool [51, 52]. Moreover, vatiquinone 
inhibited 15-lipoxygenase (15-LO) which decreased lipid oxidation and protected Leigh 
syndrome patient-derived fibroblasts against ferroptosis, a type of cell death that can be 
activated due to an imbalance in glutathione peroxidase 4 and 15-LO activity [53]. 
Vatiquinone’s safety, oral bioavailability and capacity to penetrate the blood-brain barrier 
have also been shown [50, 51]. Vatiquinone is currently being tested in a Phase II/III study 
in mitochondrial disease patients presenting refractory epilepsy to primarily evaluate the 
number of observable motor seizures per 28 days.  

 

3. Conclusions  
 

Historically, drug development within primary mitochondrial diseases, and other 
rare diseases, has fallen behind, due in large part to the complexity of identifying, 
recruiting, and treating patients with these rare conditions. The growing understanding 
of mitochondrial disease complexity, heterogeneity, and the underlying genetics, as well 
as the shift towards patient involvement in drug development, have gradually changed 
this. Moreover, going back to 1983, the US Congress enacted a new law, the Orphan Drug 
Act, to reduce the cost and provide financial incentive for developing drugs for rare 
conditions, so-called orphan drugs, by offering tax credits, a waiver of the Prescription 
Drug User Fee, and extended market exclusivity options [54]. Today, due to its success, 
orphan drug legislation also exists in the EU, Singapore, Japan, Australia, South Korea, and 
Taiwan [55]. 

 

Currently, there are more than 100 ongoing or planned clinical interventional 
studies listed in www.clinicaltrials.gov investigating the safety and/or efficacy of 
potential treatments for patients with primary mitochondrial diseases. These clinical 
trials are focused on dietary supplements, medical devices, gene therapy, mitochondrial 
supplementation, mitochondrial donation in vitro fertilization, new treatment 
approaches, and small molecules. The interest in mitochondrial medicine is clearly 

http://www.clinicaltrials.gov/
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increasing, and we anticipate and hope that new treatments will become available to 
primary mitochondrial disease patients within the next few years.   
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